Wednesday, FEBRUARY 26, 2003

Contest B

The MATHEMATICAL ASSOCIATION OF AMERICA American Mathematics Competitions

Presented by the Akamai Foundation

- 1. DO NOT OPEN THIS BOOKLET UNTIL TOLD TO DO SO BY YOUR PROCTOR.
- 2. This is a twenty-five question, multiple choice test. Each question is followed by answers marked A,B,C,D and E. Only one of these is correct.
- 3. The answers to the problems are to be marked on the AMC 10 Answer Form with a #2 pencil. Check the blackened circles for accuracy and erase errors and stray marks completely. Only answers properly marked on the answer form will be graded.
- 4. SCORING: You will receive 6 points for each correct answer, 2.5 points for each problem left unanswered, and 0 points for each incorrect answer.
- 5. No aids are permitted other than scratch paper, graph paper, ruler, compass, protractor, erasers and calculators that are accepted for use on the SAT. No problems on the test will *require* the use of a calculator.
- 6. Figures are not necessarily drawn to scale.
- 7. Before beginning the test, your proctor will ask you to record certain information on the answer form. When your proctor gives the signal, begin working the problems. You will have **75 MINUTES** working time to complete the test.
- 8. When you finish the exam, *sign your name* in the space provided on the Answer Form.

Students who score in the top 1% on this AMC 10 will be invited to take the 21st annual American Invitational Mathematics Examination (AIME) on Tuesday, March 25, 2003 or on Tuesday, April 8, 2003. More details about the AIME and other information are on the back page of this test booklet.

The Committee on the American Mathematics Competitions (CAMC) reserves the right to re-examine students before deciding whether to grant official status to their scores. The CAMC also reserves the right to disqualify all scores from a school if it is determined that the required security procedures were not followed.

The publication, reproduction, or communication of the problems or solutions of the AMC 10 during the period when students are eligible to participate seriously jeopardizes the integrity of the results. Duplication at any time via copier, telephone, eMail, World Wide Web or media of any type is a violation of the copyright law.

Copyright © 2003, Committee on the American Mathematics Competitions,

1. Which of the following is the same as

$$\frac{2-4+6-8+10-12+14}{3-6+9-12+15-18+21}?$$

(A)
$$-1$$
 (B) $-\frac{2}{3}$ (C) $\frac{2}{3}$ (D) 1 (E) $\frac{14}{3}$

2. Al gets the disease algebritis and must take one green pill and one pink pill each day for two weeks. A green pill costs \$1 more than a pink pill, and Al's pills cost a total of \$546 for the two weeks. How much does one green pill cost?

(A) \$7 (B) \$14 (C) \$19 (D) \$20 (E) \$39

3. The sum of 5 consecutive even integers is 4 less than the sum of the first 8 consecutive odd counting numbers. What is the smallest of the even integers?

(A) 6 (B) 8 (C) 10 (D) 12 (E) 14

4. Rose fills each of the rectangular regions of her rectangular flower bed with a different type of flower. The lengths, in feet, of the rectangular regions in her flower bed are as shown in the figure. She plants one flower per square foot in each region. Asters cost \$1 each, begonias \$1.50 each, cannas \$2 each, dahlias \$2.50 each, and Easter lilies \$3 each. What is the least possible cost, in dollars, for her garden?

5. Moe uses a mower to cut his rectangular 90-foot by 150-foot lawn. The swath he cuts is 28 inches wide, but he overlaps each cut by 4 inches to make sure that no grass is missed. He walks at the rate of 5000 feet per hour while pushing the mower. Which of the following is closest to the number of hours it will take Moe to mow his lawn?

(A) 0.75 (B) 0.8 (C) 1.35 (D) 1.5 (E) 3

6. Many television screens are rectangles that are measured by the length of their diagonals. The ratio of the horizontal length to the height in a standard television screen is 4 : 3. The horizontal length of a "27-inch" television screen is closest, in inches, to which of the following?

- (A) 20 (B) 20.5 (C) 21 (D) 21.5 (E) 22
- 7. The symbolism $\lfloor x \rfloor$ denotes the largest integer not exceeding x. For example, $\lfloor 3 \rfloor = 3$, and $\lfloor 9/2 \rfloor = 4$. Compute

$$\lfloor \sqrt{1} \rfloor + \lfloor \sqrt{2} \rfloor + \lfloor \sqrt{3} \rfloor + \dots + \lfloor \sqrt{16} \rfloor.$$

- (A) 35 (B) 38 (C) 40 (D) 42 (E) 136
- 8. The second and fourth terms of a geometric sequence are 2 and 6. Which of the following is a possible first term?

(A)
$$-\sqrt{3}$$
 (B) $-\frac{2\sqrt{3}}{3}$ (C) $-\frac{\sqrt{3}}{3}$ (D) $\sqrt{3}$ (E) 3

9. Find the value of x that satisfies the equation

$$25^{-2} = \frac{5^{48/x}}{5^{26/x} \cdot 25^{17/x}}.$$

- (A) 2 (B) 3 (C) 5 (D) 6 (E) 9
- 10. Nebraska, the home of the AMC, changed its license plate scheme. Each old license plate consisted of a letter followed by four digits. Each new license plate consists of three letters followed by three digits. By how many times is the number of possible license plates increased?

(A)
$$\frac{26}{10}$$
 (B) $\frac{26^2}{10^2}$ (C) $\frac{26^2}{10}$ (D) $\frac{26^3}{10^3}$ (E) $\frac{26^3}{10^2}$

- 11. A line with slope 3 intersects a line with slope 5 at the point (10, 15). What is the distance between the x-intercepts of these two lines?
 - (A) 2 (B) 5 (C) 7 (D) 12 (E) 20

- 12. Al, Betty, and Clare split \$1000 among them to be invested in different ways. Each begins with a different amount. At the end of one year they have a total of \$1500. Betty and Clare have both doubled their money, whereas Al has managed to lose \$100. What was Al's original portion?
 - (A) \$250 (B) \$350 (C) \$400 (D) \$450 (E) \$500
- 13. Let $\clubsuit(x)$ denote the sum of the digits of the positive integer x. For example, $\clubsuit(8) = 8$ and $\clubsuit(123) = 1 + 2 + 3 = 6$. For how many two-digit values of x is $\clubsuit(\bigstar(x)) = 3$?
 - (A) 3 (B) 4 (C) 6 (D) 9 (E) 10
- 14. Given that $3^8 \cdot 5^2 = a^b$, where both a and b are positive integers, find the smallest possible value for a + b.
 - (A) 25 (B) 34 (C) 351 (D) 407 (E) 900
- 15. There are 100 players in a singles tennis tournament. The tournament is single elimination, meaning that a player who loses a match is eliminated. In the first round, the strongest 28 players are given a bye, and the remaining 72 players are paired off to play. After each round, the remaining players play in the next round. The match continues until only one player remains unbeaten. The total number of matches played is
 - (A) a prime number
 (B) divisible by 2
 (C) divisible by 5
 (D) divisible by 7
 (E) divisible by 11
- 16. A restaurant offers three desserts, and exactly twice as many appetizers as main courses. A dinner consists of an appetizer, a main course, and a dessert. What is the least number of main courses that the restaurant should offer so that a customer could have a different dinner each night in the year 2003?
 - (A) 4 (B) 5 (C) 6 (D) 7 (E) 8
- 17. An ice cream cone consists of a sphere of vanilla ice cream and a right circular cone that has the same diameter as the sphere. If the ice cream melts, it will exactly fill the cone. Assume that the melted ice cream occupies 75% of the volume of the frozen ice cream. What is the ratio of the cone's height to its radius? (Note: A cone with radius r and height h has volume $\pi r^2 h/3$, and a sphere with radius r has volume $4\pi r^3/3$.)

(A) 2:1 (B) 3:1 (C) 4:1 (D) 16:3 (E) 6:1

18. What is the largest integer that is a divisor of

(n+1)(n+3)(n+5)(n+7)(n+9)

for all positive even integers n?

- (A) 3 (B) 5 (C) 11 (D) 15 (E) 165
- 19. Three semicircles of radius 1 are constructed on diameter \overline{AB} of a semicircle of radius 2. The centers of the small semicircles divide \overline{AB} into four line segments of equal length, as shown. What is the area of the shaded region that lies within the large semicircle but outside the smaller semicircles?

20. In rectangle ABCD, AB = 5 and BC = 3. Points F and G are on \overline{CD} so that DF = 1 and GC = 2. Lines AF and BG intersect at E. Find the area of $\triangle AEB$.

21. A bag contains two red beads and two green beads. You reach into the bag and pull out a bead, replacing it with a red bead regardless of the color you pulled out. What is the probability that all beads in the bag are red after three such replacements?

(A)
$$\frac{1}{8}$$
 (B) $\frac{5}{32}$ (C) $\frac{9}{32}$ (D) $\frac{3}{8}$ (E) $\frac{7}{16}$

- 22. A clock chimes once at 30 minutes past each hour and chimes on the hour according to the hour. For example, at 1 PM there is one chime and at noon and midnight there are twelve chimes. Starting at 11:15 AM on February 26, 2003, on what date will the 2003rd chime occur?
 - (A) March 8 (B) March 9 (C) March 10 (D) March 20

(E) March 21

23. A regular octagon *ABCDEFGH* has an area of one square unit. What is the area of the rectangle *ABEF*?

24. The first four terms in an arithmetic sequence are x + y, x - y, xy, and x/y, in that order. What is the fifth term?

(A) $-\frac{15}{8}$ (B) $-\frac{6}{5}$ (C) 0 (D) $\frac{27}{20}$ (E) $\frac{123}{40}$

25. How many distinct four-digit numbers are divisible by 3 and have 23 as their last two digits?

(A) 27 (B) 30 (C) 33 (D) 81 (E) 90

Correspondence about the problems and solutions for this AMC 10 should be addressed to:

Prof. Douglas Faires, Department of Mathematics Youngstown State University, Youngstown, OH 44555-0001 Phone:330-742-1805; Fax: 330-742-3170; email: faires@math.ysu.edu

Orders for any of the publications listed below should be addressed to:

Titu Andreescu, Director American Mathematics Competitions University of Nebraska, P.O. Box 81606 Lincoln, NE 68501-1606 Phone: 402-472-2257; Fax: 402-472-6087; email: titu@amc.unl.edu;

2003 AIME

The AIME will be held on Tuesday, March 27, 2003 with the alternate on April 8,2003. It is a 15-question, 3-hour, integer-answer exam. You will be invited to participate only if you score in the top 1% of this AMC 10 or receive a score of 100 or above on the AMC 12. Alternately, you must be in the top 5% of the AMC 12. Top-scoring students on the AMC 10/12/AIME will be selected to take the USA Mathematical Olympiad (USAMO) in late Spring. The best way to prepare for the AIME and USAMO is to study previous years of these exams. Copies may be ordered as indicated below.

PUBLICATIONS

MINIMUM ORDER: \$10 (before shipping/handling fee), *PAYMENT IN US FUNDS ONLY made payable to the* American Mathematics Competitions or VISA/MASTERCARD/AMERI-CAN EXPRESS accepted. Include card number, expiration date, cardholder name and address. U.S.A. and Canadian orders must be prepaid and will be shipped Priority Mail, UPS or Air Mail.

INTERNATIONAL ORDERS: Do NOT prepay. An invoice will be sent to you.

COPYRIGHT: All publications are copyrighted; it is illegal to make copies or transmit them on the internet without permission.

Examinations: Each price is for one copy of an exam and its solutions for one year. Specify the years you want and how many copies of each. All prices effective to September 1, 2003.

- AMC 10 2000-2003/AHSME (AMC 12) 1989-2003, \$1 per copy per year.
- AIME 1989-2003, \$2 per copy per year (2003 available after April)
- USA and International Math Olympiads, 1989-1999, \$5 per copy per year; 2000, 2001 \$14.00 each
- National Summary of Results and Awards, 1989-2003, \$10 per copy per year.
- Problem Book I, AHSMEs 1950-60, Problem Book II, AHSMEs 1961-65, \$10/ea
- Problem Book III, AHSMEs 1966-72, Problem Book IV, AHSMEs 1973-82, \$13/ea
- Problem Book V, AHSMEs and AIMEs 1983-88, \$30/ea
- Problem Book VI, AHSMEs 1989-1994, \$24/ea
- USA Mathematical Olympiad Book 1972-86, \$18/ea
- International Mathematical Olympiad Book II, 1978-85, \$20/ea
- World Olympiad Problems/Solutions 1995-96, 1996-97, 1997-98, \$15/ea
- Mathematical Olympiads Problems & Solutions from around the World 1998-1999, 1999-2000, \$25/ea
- The Arbelos, Volumes I-V, and a Special Geometry Issue, \$8/ea

Shipping & Handling charges for Publication Orders:

Order Total	Add:	Order Total	Add:
\$ 10.00 \$ 30.00	\$5	\$ 40.01 \$ 50.00	\$9
\$ 30.01 \$ 40.00	\$7	\$ 50.01 \$ 75.00	\$12
\$	75.01 up	\$15	

2003

AMC 10 - Contest B DO NOT OPEN UNTIL Wednesday, FEBRUARY 26, 2003

Administration On An Earlier Date Will Disqualify Your School's Results

- All information (Rules and Instructions) needed to administer this exam is contained in the TEACHERS' MANUAL, which is outside of this package. PLEASE READ THE MANUAL BEFORE FEBRUARY 26. Nothing is needed from inside this package until February 26.
- 2. Your PRINCIPAL or VICE PRINCIPAL must sign the Certification Form B found in the Teachers' Manual.
- 3. The Answer Forms must be mailed by First Class mail to the AMC Director, Titu Andreescu, no later than 24 hours following the examination.

- 4. <u>Please Note:</u> All Problems and Solutions are copyrighted; it is illegal to make copies or transmit them on the internet or world wide web without permission.
- 5. The publication, reproduction or communication of the problems or solutions of this test during the period when students are eligible to participate seriously jeopardizes the integrity of the results. Duplication at any time via copier, telephone, eMail, World Wide Web or media of any type is a violation of the copyright law.

Sponsored by The MATHEMATICAL ASSOCIATION OF AMERICA The Akamai Foundation University of Nebraska – Lincoln Contributors

Casualty Actuarial Society American Statistical Association National Council of Teachers of Mathematics Society of Actuaries American Society of Pension Actuaries American Mathematical Society American Mathematical Association of Two Year Colleges Pi Mu Epsilon **Consortium for Mathematics and its Applications** Mu Alpha Theta Kappa Mu Epsilon National Association of Mathematicians School Science and Mathematics Association Clay Mathematics Institute Institute for Operations Research and the Management Sciences Canada/USA Mathpath & Mathcamp