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1. (A) Six people are fundraising, so each must raise $1500/6 = $250.

2. (B) Because

¶(1, 2, 3) =
1

2 − 3
= −1, ¶(2, 3, 1) =

2

3 − 1
= 1, and

¶(3, 1, 2) =
3

1 − 2
= −3,

we have

¶ (¶(1, 2, 3),¶(2, 3, 1),¶(3, 1, 2)) =¶(−1, 1,−3)

=
−1

1 − (−3)
= −1

4
.

3. (E) Since $20 is 2000 cents, she pays (0.0145)(2000) = 29 cents per hour in local
taxes.

4. (D) The equation implies that either

x − 1 = x − 2 or x − 1 = −(x − 2)

The first equation has no solution, and the solution to the second equation is
x = 3/2.

OR

Since |x − a| is the distance of x from a, x must be equidistant from 1 and 2.
Hence x = 3/2.

5. (C) The number of three-point sets that can be chosen from the nine grid points
is

(

9

3

)

=
9!

3! · 6!
= 84.

Eight of these sets consist of three collinear points:
3 sets of points lie on vertical lines, 3 on horizontal lines, and 2 on diagonals.
Hence the probability is 8/84 = 2/21.

6. (E) Bertha has 30− 6 = 24 granddaughters, none of whom have any daughters.
The granddaughters are the children of 24/6 = 4 of Bertha’s daughters, so the
number of women having no daughters is 30− 4 = 26.

7. (C) There are five layers in the stack, and each of the top four layers has one
less orange in its length and width than the layer on which it rests. Hence the
total number of oranges in the stack is

5 · 8 + 4 · 7 + 3 · 6 + 2 · 5 + 1 · 4 = 100.

8. (B) After three rounds the players A, B, and C have 14, 13, and 12 tokens,
respectively. Every subsequent three rounds of play reduces each player’s supply
of tokens by one. After 36 rounds they have 3, 2, and 1 token, respectively, and
after the 37th round Player A has no tokens.
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9. (B) Let x, y, and z be the areas of 4ADE, 4BDC, and 4ABD, respectively.
The area of 4ABE is (1/2)(4)(8) = 16 = x + z, and the area of 4BAC is
(1/2)(4)(6) = 12 = y + z. The requested difference is

x − y = (x + z) − (y + z) = 16− 12 = 4.

10. (D) The result will occur when both A and B have either 0, 1, 2, or 3 heads,
and these probabilities are shown in the table.

Heads 0 1 2 3

A
1

8

3

8

3

8

1

8

B
1

16

4

16

6

16

4

16

The probability of both coins having the same number of heads is

1

8
· 1

16
+

3

8
· 4

16
+

3

8
· 6

16
+

1

8
· 4

16
=

35

128
.

11. (C) Let r, h, and V , respectively, be the radius, height, and volume of the jar
that is currently being used. The new jar will have a radius of 1.25r and volume
V . Let H be the height of the new jar. Then

πr2h = V = π(1.25r)2H, so
H

h
=

1

(1.25)2
= 0.64.

Thus H is 64% of h, so the height must be reduced by (100 − 64)% = 36%.
OR

Multiplying the diameter by 5/4 multiplies the area of the base by (5/4)2 =
25/16, so in order to keep the same volume, the height must be multiplied by
16/25. Thus the height must be decreased by 9/25, or 36%.

12. (C) A customer makes one of two choices for each condiment, to include it or
not to include it. The choices are made independently, so there are 28 = 256
possible combinations of condiments. For each of those combinations there are
three choices regarding the number of meat patties, so there are altogether
(3)(256) = 768 different kinds of hamburger.

13. (D) Because each man danced with exactly three women, there were (12)(3) =
36 pairs of men and women who danced together. Each woman had two partners,
so the number of women who attended is 36/2 = 18.
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14. (A) If n is the number of coins in Paula’s purse, then their total value is 20n
cents. If she had one more quarter, she would have n+1 coins whose total value
in cents could be expressed both as 20n + 25 and as 21(n + 1). Therefore

20n + 25 = 21(n + 1), so n = 4.

Since Paula has four coins with a total value of 80 cents, she must have three
quarters and one nickel, so the number of dimes is 0.

15. (D) Because
x + y

x
= 1 +

y

x
and

y

x
< 0,

the value is maximized when |y/x| is minimized, that is, when |y| is minimized
and |x| is maximized. So y = 2 and x = −4 gives the largest value, which is
1 + (−1/2) = 1/2.

16. (D) All of the squares of size 5 × 5, 4 × 4, and 3 × 3 contain the black square
and there are

12 + 22 + 32 = 14

of these. In addition, 4 of the 2 × 2 squares and 1 of the 1 × 1 squares contain
the black square, for a total of 14 + 4 + 1 = 19.

17. (C) When they first meet, they have run a combined distance equal to half
the length of the track. Between their first and second meetings, they run a
combined distance equal to the full length of the track. Because Brenda runs
at a constant speed and runs 100 meters before their first meeting, she runs
2(100) = 200 meters between their first and second meetings. Therefore the
length of the track is 200 + 150 = 350 meters.

18. (A) The terms of the arithmetic progression are 9, 9 + d, and 9 + 2d for some
real number d. The terms of the geometric progression are 9, 11+d, and 29+2d.
Therefore

(11 + d)2 = 9(29 + 2d) so d2 + 4d − 140 = 0.

Thus d = 10 or d = −14. The corresponding geometric progressions are 9, 21,
49 and 9, −3, 1, so the smallest possible value for the third term of the geometric
progression is 1.

19. (C) If the stripe were cut from the silo and spread flat, it would form a paral-
lelogram 3 feet wide and 80 feet high. So the area of the stripe is 3(80) = 240
square feet.
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20. (D) First, assume that AB = 1, and let ED = DF = x. By the Pythagorean
Theorem x2 + x2 = EF 2 = EB2 = 12 + (1 − x)2, so x2 = 2(1 − x). Hence the
desired ratio of the areas is

Area(4DEF )

Area(4ABE)
=

x2

1 − x
= 2.

21. (B) Let θ be the acute angle between the two lines. The area of shaded Region
1 in the diagram is

2

(

1

2
θ(1)2

)

= θ.

��

�

��

�

θ

The area of shaded Region 2 is

2

(

1

2
(π − θ)(22 − 12)

)

= 3π − 3θ.

The area of shaded Region 3 is

2

(

1

2
θ(32 − 22)

)

= 5θ.

Hence the total area of the shaded regions is 3π + 3θ. The area bounded by the
largest circle is 9π, so

3π + 3θ

9π
=

8

8 + 13
.

Solving for θ gives θ = π/7.
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22. (D) Let F be the point at which CE is tangent to the semicircle, and let G be
the midpoint of AB. Because CF and CB are both tangents to the semicircle,
CF = CB = 2. Similarly, EA = EF . Let x = AE. The Pythagorean Theorem
applied to 4CDE gives

(2 − x)2 + 22 = (2 + x)2.

It follows that x = 1/2 and CE = 2 + x = 5/2.

A B

CD

E

F

G

23. (D) Let E, H , and F be the centers of circles A, B, and D, respectively, and let
G be the point of tangency of circles B and C. Let x = FG and y = GH . Since
the center of circle D lies on circle A and the circles have a common point of
tangency, the radius of circle D is 2, which is the diameter of circle A. Applying
the Pythagorean Theorem to right triangles EGH and FGH gives

(1 + y)2 = (1 + x)2 + y2 and (2 − y)2 = x2 + y2,

from which it follows that

y = x +
x2

2
and y = 1 − x2

4
.

The solutions of this system are (x, y) = (2/3, 8/9) and (x, y) = (−2, 0). The
radius of circle B is the positive solution for y, which is 8/9.

1

1

y

y

y
H

G
E F x

2-y
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24. (D) Note that

a21 = a2 = a2·1 = 1 · a1 = 20 · 20 = 20,

a22 = a4 = a2·2 = 2 · a2 = 21 · 20 = 21,

a23 = a8 = a2·4 = 4 · a4 = 22 · 21 = 21+2,

a24 = a16 = a2·8 = 8 · a8 = 23 · 21+2 = 21+2+3,

and, in general, a2n = 21+2+···+(n−1). Because

1 + 2 + 3 + · · · + (n − 1) =
1

2
n(n − 1),

we have a2100 = 2(100)(99)/2 = 24950.

25. (B) Let A, B, C and E be the centers of the three small spheres and the large
sphere, respectively. Then 4ABC is equilateral with side length 2. If D is the
intersection of the medians of 4ABC, then E is directly above D. Because
AE = 3 and AD = 2

√
3/3, it follows that

DE =

√

√

√

√32 −
(

2
√

3

3

)2

=

√
69

3
.

Because D is 1 unit above the plane and the top of the larger sphere is 2 units
above E, the distance from the plane to the top of the larger sphere is

3 +

√
69

3
.

AB

C

D

11
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