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1. Answer (E): The perimeter of each bedroom is 2(12 + 10) = 44 feet, so the
surface to be painted in each bedroom has an area of 44 · 8 − 60 = 292 square
feet. Since there are 3 bedrooms, Isabella must paint 3 · 292 = 876 square feet.

2. Answer (E): Since 3?5 = (3+5)5 = 8 ·5 = 40 and 5?3 = (5+3)3 = 8 ·3 = 24,
we have

3 ? 5− 5 ? 3 = 40− 24 = 16.

3. Answer (B): The student used 120/30 = 4 gallons on the trip home and
120/20 = 6 gallons on the trip back to school. So the average gas mileage for
the round trip was

240 miles
10 gallons

= 24 miles per gallon.

4. Answer (D): Since OA = OB = OC, triangles AOB, BOC, and COA are
all isosceles. Hence

∠ABC = ∠ABO + ∠OBC =
180◦ − 140◦

2
+

180◦ − 120◦

2
= 50◦.

OR

Since
∠AOC = 360◦ − 140◦ − 120◦ = 100◦,

the Central Angle Theorem implies that

∠ABC =
1
2
∠AOC = 50◦.

5. Answer (D): Let A, B, C, and D represent the following statements about
a person in the land.

A : Is an Arog. B : Is a Braf. C : Is a Crup. D : Is a Dramp.

Then the statement in the first sentence of the problem can be expressed as:

A =⇒ B, C =⇒ B, D =⇒ A and C =⇒ D.

The most we can conclude is that

C =⇒ D =⇒ A =⇒ B.

So the only statement listed that we are certain is true is that Crups are both
Arogs and Brafs.
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6. Answer (D): Sarah will receive 4.5 points for the three questions she leaves
unanswered, so she must earn at least 100 − 4.5 = 95.5 points on the first 22
problems. Because

15 <
95.5
6

< 16,

she must solve at least 16 of the first 22 problems correctly. This would give her
a score of 100.5.

7. Answer (E): Because AB = BC = EA and ∠A = ∠B = 90◦, quadrilateral
ABCE is a square, so ∠AEC = 90◦.

A B

C

D

E

Also CD = DE = EC, so 4CDE is equilateral and ∠CED = 60◦. Therefore

∠E = ∠AEC + ∠CED = 90◦ + 60◦ = 150◦.

8. Answer (D): Once a and c are chosen, the integer b is determined. For a = 0,
we could have c = 2, 4, 6, or 8. For a = 2, we could have c = 4, 6, or 8. For
a = 4, we could have c = 6 or 8, and for a = 6 the only possibility is c = 8.
Thus there are 1 + 2 + 3 + 4 = 10 possibilities when a is even. Similarly, there
are 10 possibilities when a is odd, so the number of possibilities is 20.

9. Answer (D): The last s is the 12th appearance of this letter in the message,
so it will be replaced by the letter that is

1 + 2 + 3 + · · ·+ 12 =
1
2
(12 · 13) = 3 · 26

letters to the right of s. Since the alphabet has 26 letters, this letter s is coded
as s.

10. Answer (A): If the altitude from A has length d, then 4ABC has area
(1/2)(BC)d. The area is 1 if and only if d = 2/(BC). Thus S consists of the
two lines that are parallel to line BC and are 2/(BC) units from it, as shown.

B C

d

d
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11. Answer (C): Let BD be an altitude of the isosceles 4ABC, and let O denote
the center of the circle with radius r that passes through A, B, and C, as shown.

A

B

D

O3

1
C

r

r

Then
BD =

√
32 − 12 = 2

√
2 and OD = 2

√
2− r.

Since 4ADO is a right triangle, we have

r2 = 12 +
(
2
√

2− r
)2

= 1 + 8− 4
√

2r + r2, and r =
9

4
√

2
=

9
8

√
2.

As a consequence, the circle has area

(
9
8

√
2
)2

π =
81
32

π.

12. Answer (D): Tom’s age N years ago was T − N . The sum of his three
children’s ages at that time was T − 3N . Therefore T − N = 2(T − 3N), so
5N = T and T/N = 5. The conditions of the problem can be met, for example,
if Tom’s age is 30 and the ages of his children are 9, 10, and 11. In that case
T = 30 and N = 6.

13. Answer (D): The two circles intersect at (0, 0) and (2, 2), as shown.

y

x

(2, 2)
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Half of the region described is formed by removing an isosceles right triangle of
leg length 2 from a quarter of one of the circles. Because the quarter-circle has
area (1/4)π(2)2 = π and the triangle has area (1/2)(2)2 = 2, the area of the
region is 2(π − 2).

14. Answer (C): Let g be the number of girls and b the number of boys initially
in the group. Then g = 0.4(g + b). After two girls leave and two boys arrive,
the size of the entire group is unchanged, so g − 2 = 0.3(g + b). The solution of
the system of equations

g = 0.4(g + b) and g − 2 = 0.3(g + b)

is g = 8 and b = 12, so there were initially 8 girls.

OR

After two girls leave and two boys arrive, the size of the group is unchanged. So
the two girls who left represent 40% − 30% = 10% of the group. Thus the size
of the group is 20, and the original number of girls was 40% of 20, or 8.

15. Answer (D): Let x be the degree measure of ∠A. Then the degree measures
of angles B, C, and D are x/2, x/3, and x/4, respectively. The degree measures
of the four angles have a sum of 360, so

360 = x +
x

2
+

x

3
+

x

4
=

25x

12
.

Thus x = (12 · 360)/25 = 172.8 ≈ 173.

16. Answer (C): Let N be the number of students in the class. Then there are
0.1N juniors and 0.9N seniors. Let s be the score of each junior. The scores
totaled 84N = 83(0.9N) + s(0.1N), so

s =
84N − 83(0.9N)

0.1N
= 93.

Note: In this problem, we could assume that the class has one junior and nine
seniors. Then

9 · 83 + s = 10 · 84 = 9 · 84 + 84 and s = 9(84− 83) + 84 = 93.

17. Answer (D): Let the side length of 4ABC be s. Then the areas of 4APB,
4BPC, and 4CPA are, respectively, s/2, s, and 3s/2. The area of 4ABC is
the sum of these, which is 3s. The area of 4ABC may also be expressed as
(
√

3/4)s2, so 3s = (
√

3/4)s2. The unique positive solution for s is 4
√

3.
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18. Answer (B): Construct the square ABCD by connecting the centers of the
large circles, as shown, and consider the isosceles right 4BAD.

2

r

r

r

r

r

r

A B

CD

Since AB = AD = 2r and BD = 2 + 2r, we have 2(2r)2 = (2 + 2r)2. So

1 + 2r + r2 = 2r2, and r2 − 2r − 1 = 0.

Applying the quadratic formula gives r = 1 +
√

2.

19. Answer (C): The first remainder is even with probability 2/6 = 1/3 and odd
with probability 2/3. The second remainder is even with probability 3/6 = 1/2
and odd with probability 1/2. The shaded squares are those that indicate that
both remainders are odd or both are even. Hence the square is shaded with
probability

1
3
· 1
2

+
2
3
· 1
2

=
1
2
.

20. Answer (C): After one of the 25 blocks is chosen, 16 of the remaining blocks
do not share its row or column. After the second block is chosen, 9 of the
remaining blocks do not share a row or column with either of the first two.
Because the three blocks can be chosen in any order, the number of different
combinations is

25 · 16 · 9
3!

= 25 · 8 · 3 = 600.

21. Answer (B): Let s be the side length of the square, and let h be the length
of the altitude of 4ABC from B. Because 4ABC and 4WBZ are similar, it
follows that

h− s

s
=

h

AC
=

h

5
, so s =

5h

5 + h
.

Because h = 3 · 4/5 = 12/5, the side length of the square is

s =
5(12/5)
5 + 12/5

=
60
37

.

OR
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Because 4WBZ is similar to 4ABC, we have

BZ =
4
5
s and CZ = 4− 4

5
s.

Because 4ZY C is similar to 4ABC, we have

s

4− (4/5)s
=

3
5
.

Thus
5s = 12− 12

5
s and s =

60
37

.

22. Answer (B): The probability of the number appearing 0, 1, and 2 times is

P (0) =
3
4
· 3
4

=
9
16

, P (1) = 2 · 1
4
· 3
4

=
6
16

, and P (2) =
1
4
· 1
4

=
1
16

,

respectively. So the expected return, in dollars, to the player is

P (0) · (−1) + P (1) · (1) + P (2) · (2) =
−9 + 6 + 2

16
= − 1

16
.

23. Answer (E): Let h be the altitude of the original pyramid. Then the altitude
of the smaller pyramid is h− 2. Because the two pyramids are similar, the ratio
of their altitudes is the square root of the ratio of their surface areas. Thus
h/(h− 2) =

√
2, so

h =
2
√

2√
2− 1

= 4 + 2
√

2.

24. Answer (C): Since n is divisible by 9, the sum of the digits of n must be a
multiple of 9. At least one digit of n is 4, so at least nine digits must be 4, and
at least one digit must be 9. For n to be divisible by 4, the last two digits of n
must each be 4. These conditions are satisfied by several ten-digit numbers, of
which the smallest is 4,444,444,944.
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25. Answer (A): Let u = a/b. Then the problem is equivalent to finding all
positive rational numbers u such that

u +
14
9u

= k

for some integer k. This equation is equivalent to 9u2 − 9uk + 14 = 0, whose
solutions are

u =
9k ±√81k2 − 504

18
=

k

2
± 1

6

√
9k2 − 56.

Hence u is rational if and only if
√

9k2 − 56 is rational, which is true if and only
if 9k2 − 56 is a perfect square. Suppose that 9k2 − 56 = s2 for some positive
integer s. Then (3k − s)(3k + s) = 56. The only factors of 56 are 1, 2, 4, 7,
8, 14, 28, and 56, so (3k − s, 3k + s) is one of the ordered pairs (1, 56), (2, 28),
(4, 14), or (7, 8). The cases (1, 56) and (7, 8) yield no integer solutions. The
cases (2, 28) and (4, 14) yield k = 5 and k = 3, respectively. If k = 5, then
u = 1/3 or u = 14/3. If k = 3, then u = 2/3 or u = 7/3. Therefore there
are four pairs (a, b) that satisfy the given conditions, namely (1, 3), (2, 3), (7, 3),
and (14, 3).

OR

Rewrite the equation
a

b
+

14b

9a
= k

in two different forms. First, multiply both sides by b and subtract a to obtain

14b2

9a
= bk − a.

Because a, b, and k are integers, 14b2 must be a multiple of a, and because a
and b have no common factors greater than 1, it follows that 14 is divisible by
a. Next, multiply both sides of the original equation by 9a and subtract 14b to
obtain

9a2

b
= 9ak − 14b.

This shows that 9a2 is a multiple of b, so 9 must be divisible by b. Thus if (a, b)
is a solution, then b = 1, 3, or 9, and a = 1, 2, 7, or 14. This gives a total of
twelve possible solutions (a, b), each of which can be checked quickly. The only
such pairs for which

a

b
+

14b

9a

is an integer are when (a, b) is (1, 3), (2, 3), (7, 3), or (14, 3).
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