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1. Answer (D): The average of the five values is

6 + 0.5 + 1 + 2.5 + 10
5

=
20
5

= 4.

2. Answer (B): Let s be the side length of the smaller square. Then the length
of the rectangle is 4s, and the width is 4s − s = 3s. Hence the rectangle length
is 4s

3s = 4
3 times as large as its width.

3. Answer (D): Let x be the number of marbles that Tyrone gave to Eric. Then
97 − x = 2(11 + x). Solving this equation yields x = 25.

4. Answer (B): Because 412 ÷ 56 is between 7 and 8, the reading will need 8
discs. Therefore each disc will contain 412 ÷ 8 = 51.5 minutes of reading.

5. Answer (E): Because the circumference is 2πr = 24π, the radius r is 12.
Therefore the area is πr2 = 144π, and k = 144.

6. Answer (C): Note that ♠(2, 2) = 2 − 1
2 = 3

2 . Therefore

♠(2,♠(2, 2)) = ♠
(

2,
3
2

)
= 2 − 2

3
=

4
3
.

7. Answer (C): When Crystal travels one mile northeast she travels
√

2
2 miles

north and
√

2
2 miles east. Similarly, when she travels southeast for one mile she

travels
√

2
2 miles south and

√
2

2 miles east. Just before the last portion of her
run she has traveled a net of 1 +

√
2

2 −
√

2
2 = 1 miles north, and

√
2

2 +
√

2
2 =

√
2

miles east. By the Pythagorean Theorem, the last portion of her run is
√

12 + (
√

2)2 =
√

1 + 2 =
√

3 miles.

8. Answer (D): Tony worked for 2 · 50 = 100 hours. His average earnings per
hour during this period is $630

100 = $6.30 . Hence his average age during this
period was $6.30

$0.50 = 12.6, and so at the end of the six month period he was 13.
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9. Answer (E): Let x + 32 be written in the form CDDC. Because x has three
digits, 1000 < x + 32 < 1032, and so C = 1 and D = 0. Hence x = 1001− 32 =
969, and the sum of the digits of x is 9 + 6 + 9 = 24.

10. Answer (E): A non-leap year has 365 days, and 365 = 52 · 7 + 1, so there are
52 weeks and 1 day in a non-leap year. Because May 27 was after leap day in
2008, Marvin’s birthday fell on Wednesday in 2009, and will fall on Thursday
in 2010 and Friday in 2011. His birthday will be on Sunday in the leap year
2012, Monday in 2013, Tuesday in 2014, Wednesday in 2015, Friday in 2016,
and Saturday in 2017.

11. Answer (D): The solution of the inequality is

a − 3
2

≤ x ≤ b − 3
2

.

If b−3
2 − a−3

2 = 10, then b − a = 20.

12. Answer (C): The volume scale for Logan’s model is 0.1 : 100,000 = 1 :
1,000,000. Therefore the linear scale is 1 : 3

√
1,000,000, which is 1 : 100. Logan’s

water tower should stand 40
100 = 0.4 meters tall.

13. Answer (A): Angelina drove 80t km before she stopped. After her stop, she
drove (3− 1

3 − t) hours at an average rate of 100 kph, so she covered 100( 8
3 − t)

km in that time. Therefore 80t + 100( 8
3 − t) = 250. Note that t = 5

6 .s

14. Answer (C): Let α = ∠BAE = ∠ACD = ∠ACF . Because �CFE is
equilateral, it follows that ∠CFA = 120◦ and then

∠FAC = 180◦ − 120◦ − ∠ACF = 60◦ − α.

Therefore
∠BAC = ∠BAE + ∠FAC = α + (60◦ − α) = 60◦.

Because AB = 2 ·AC, it follows that �BAC is a 30 – 60 – 90◦ triangle, and thus
∠ACB = 90◦.
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A

B
C

D

E

F

15. Answer (D): LeRoy and Chris cannot both be frogs, because their statements
would be true and frogs lie. Also LeRoy and Chris cannot both be toads, because
then their statements would be false, and toads tell the truth. Hence between
LeRoy and Chris, exactly one must be a toad.

If Brian is a toad, then Mike must be a frog, but this is a contradiction as Mike’s
statement would then be true. Hence Brian is a frog, so Brian’s statement must
be false, and Mike must be a frog. Altogether there are 3 frogs: Brian, Mike,
and either LeRoy or Chris.

16. Answer (B): By the Angle Bisector Theorem, 8 · BA = 3 · BC. Thus BA
must be a multiple of 3. If BA = 3, the triangle is degenerate. If BA = 6, then
BC = 16, and the perimeter is 6 + 16 + 11 = 33.

17. Answer (A): The volume of the solid cube is 27 in3. The first hole to be
cut removes 2 × 2 × 3 = 12 in3 from the volume. The other holes remove
2 × 2 × 0.5 = 2 in3 from each of the four remaining faces. The volume of the
remaining solid is 27 − 12 − 4(2) = 7 in3.

18. Answer (B): The probability that Bernardo picks a 9 is 3
9 = 1

3 . In this
case, his three-digit number will begin with a 9 and will be larger than Silvia’s
three-digit number.

If Bernardo does not pick a 9, then Bernardo and Silvia will form the same
number with probability

1(
8
3

) =
1
56

.

If they do not form the same number then Bernardo’s number will be larger 1
2

of the time.
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Hence the probability is

1
3

+
2
3
· 1
2
(1 − 1

56
) =

111
168

=
37
56

.

19. Answer (E): Triangles ABC, CDE and EFA are congruent, so �ACE is
equilateral. Let X be the intersection of the lines AB and EF and define Y
and Z similarly as shown in the figure. Because ABCDEF is equiangular, it
follows that ∠XAF = ∠AFX = 60◦. Thus �XAF is equilateral. Let H be the
midpoint of XF . By the Pythagorean Theorem,

AE2 = AH2 + HE2 = (
√

3
2

r)2 + (
r

2
+ 1)2 = r2 + r + 1

Thus, the area of �ACE is
√

3
4

AE2 =
√

3
4

(r2 + r + 1).

The area of hexagon ABCDEF is equal to

[XY Z] − [XAF ] − [Y CB] − [ZED] =
√

3
4

(
(2r + 1)2 − 3r2

)
=

√
3

4
(r2 + 4r + 1)

Because [ACE] = 7
10 [ABCDEF ], it follows that

r2 + r + 1 =
7
10

(r2 + 4r + 1)

from which r2 − 6r + 1 = 0 and r = 3 ± 2
√

2. The sum of all possible values of
r is 6.

A B

C

DE

F

X Y

Z
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20. Answer (D): Each of the 8 lines segments on the fly’s path is an edge, a face
diagonal, or an interior diagonal of the cube. These three type of line segments
have lengths 1,

√
2, and

√
3, respectively. Because each vertex of the cube is

visited only once, the two line segments that meet at a vertex have a combined
length of at most

√
2 +

√
3. Therefore the sum of the lengths of the 8 segments

is at most 4
√

2 + 4
√

3. This maximum is achieved by the path

A → G → B → H → C → E → D → F → A.

A B

C
D

E F

GH

21. Answer (A): Let the polynomial be (x− r)(x− s)(x− t) with 0 < r ≤ s ≤ t.
Then rst = 2010 = 2 · 3 · 5 · 67, and r + s + t = a. If t = 67, then rs = 30, and
r + s is minimized when r = 5 and s = 6. In that case a = 67 + 5 + 6 = 78. If
t �= 67, then a > t ≥ 2 · 67 = 134, so the minimum value of a is 78.

22. Answer (A): Three chords create a triangle if and only if they intersect
pairwise inside the circle. Two chords intersect inside the circle if and only
if their endpoints alternate in order around the circle. Therefore, if points
A,B,C,D, E, and F are in order around the circle, then only the chords AD,
BE, CF all intersect pairwise inside the circle. Thus every set of 6 points
determines a unique triangle, and there are

(
8
6

)
= 28 such triangles.

23. Answer (A): If Isabella reaches the kth box, she will draw a white marble
from it with probability k

k+1 . For n ≥ 2, the probability that she will draw
white marbles from each of the first n − 1 boxes is

1
2
· 2
3
· 3
4
· · · n − 1

n
=

1
n

,

so the probability that she will draw her first red marble from the nth box is
P (n) = 1

n(n+1) . The condition P (n) < 1/2010 is equivalent to n2+n−2010 > 0,
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from which n > 1
2 (−1 +

√
8041) and (2n + 1)2 > 8041. The smallest positive

odd integer whose square exceeds 8041 is 91, and the corresponding value of n
is 45.

24. Answer (A): There are 18 factors of 90! that are multiples of 5, 3 factors
that are multiples of 25, and no factors that are multiples of higher powers of
5. Also, there are more than 45 factors of 2 in 90!. Thus 90! = 1021N where N
is an integer not divisible by 10, and if N ≡ n (mod100) with 0 < n ≤ 99, then
n is a multiple of 4.

Let 90! = AB where A consists of the factors that are relatively prime to 5 and
B consists of the factors that are divisible by 5. Note that

∏4
j=1(5k + j) ≡

5k(1 + 2 + 3 + 4) + 1 · 2 · 3 · 4 ≡ 24 (mod25), thus

A = (1 · 2 · 3 · 4) · (6 · 7 · 8 · 9) · · · · · (86 · 87 · 88 · 89)
≡ 2418 ≡ (−1)18 ≡ 1 (mod25).

Similarly,

B = (5 · 10 · 15 · 20) · (30 · 35 · 40 · 45) · (55 · 60 · 65 · 70) · (80 · 85 · 90) · (25 · 50 · 75),

thus

B

521
= (1 · 2 · 3 · 4) · (6 · 7 · 8 · 9) · (11 · 12 · 13 · 14) · (16 · 17 · 18) · (1 · 2 · 3)

≡ 243 · (−9) · (−8) · (−7) · 6 ≡ (−1)3 · 1 ≡ −1 (mod25).

Finally, 221 = 2 · (210)2 = 2 · (1024)2 ≡ 2 · (−1)2 ≡ 2 (mod25), so 13 · 221 ≡
13 · 2 ≡ 1 (mod25). Therefore

N ≡ (13 · 221)N = 13 · 90!
521

= 13 · A · B

521
≡ 13 · 1 · (−1) (mod25)

≡ −13 ≡ 12 (mod25).

Thus n is equal to 12, 37, 62, or 87, and because n is a multiple of 4, it follows
that n = 12.

25. Answer (B): Let the sequence be (a1, a2, . . . , a8). For j > 1, aj−1 = aj + m2

for some m such that aj < (m + 1)2 − m2 = 2m + 1. To minimize the value
of a1, construct the sequence in reverse order and choose the smallest possible
value of m for each j, 2 ≤ j ≤ 8. The terms in reverse order are a8 = 0,
a7 = 1, a6 = 1 + 12 = 2, a5 = 2 + 12 = 3, a4 = 3 + 22 = 7, a3 = 7 + 42 = 23,
a2 = 23 + 122 = 167, and N = a1 = 167 + 842 = 7223, which has the unit digit
3.
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