16

SOLVE FOR X

2016A

2. **Answer (C):** The equation can be written  $10^x \cdot (10^2)^{2x} = (10^3)^5$  or  $10^x \cdot 10^{4x} = 10^{15}$ . Thus  $10^{5x} = 10^{15}$ , so 5x = 15 and x = 3.

2004A 2. **(B)** Because

$$\P(1,2,3) = \frac{1}{2-3} = -1, \quad \P(2,3,1) = \frac{2}{3-1} = 1, \text{ and}$$
  
$$\P(3,1,2) = \frac{3}{1-2} = -3,$$

we have

$$\begin{split} \P\left(\P(1,2,3),\P(2,3,1),\P(3,1,2)\right) = &\P(-1,1,-3) \\ = &\frac{-1}{1-(-3)} = -\frac{1}{4}. \end{split}$$

2005A

2. (C) First we have

$$(1 \star 2) = \frac{1+2}{1-2} = -3.$$

Then

$$((1 \star 2) \star 3) = (-3 \star 3) = \frac{-3+3}{-3-3} = \frac{0}{-6} = 0.$$

2006A

2. (C) By the definition we have

$$h\otimes (h\otimes h)=h\otimes (h^3-h)=h^3-(h^3-h)=h.$$

2006B

2. (A) Because  $4 \triangleq 5 = (4+5)(4-5) = -9$ , it follows that

$$3 \spadesuit (4 \spadesuit 5) = 3 \spadesuit (-9) = (3 + (-9))(3 - (-9)) = (-6)(12) = -72.$$

2007A

2. **Answer (A):** The value of 6@2 is  $6 \cdot 2 - 2^2 = 12 - 4 = 8$ , and the value of 6#2 is  $6 + 2 - 6 \cdot 2^2 = 8 - 24 = -16$ . Thus

$$\frac{6@2}{6\#2} = \frac{8}{-16} = -\frac{1}{2}.$$

2007B

2. **Answer (E):** Since  $3 \star 5 = (3+5)5 = 8 \cdot 5 = 40$  and  $5 \star 3 = (5+3)3 = 8 \cdot 3 = 24$ , we have

$$3 \star 5 - 5 \star 3 = 40 - 24 = 16.$$

2016B

2. **Answer** (B):

$$\frac{2\heartsuit 4}{4\heartsuit 2} = \frac{2^3 \cdot 4^2}{4^3 \cdot 2^2} = \frac{2}{4} = \frac{1}{2}$$

2004A 4. (D) The equation implies that either

$$x - 1 = x - 2$$
 or  $x - 1 = -(x - 2)$ 

The first equation has no solution, and the solution to the second equation is x = 3/2.

OR

Since |x-a| is the distance of x from a, x must be equidistant from 1 and 2. Hence x=3/2.

2005B 4. (D) It follows from t

4. (D) It follows from the definition that

$$(5 \diamond 12) \diamond ((-12) \diamond (-5)) = \sqrt{5^2 + 12^2} \diamond \sqrt{(-12)^2 + (-5)^2}$$
$$= 13 \diamond 13 = \sqrt{13^2 + 13^2} = 13\sqrt{2}.$$

2010B

4. Answer (C): Note that  $\heartsuit(1) = \frac{1+1^2}{2} = 1$ ,  $\heartsuit(2) = \frac{2+2^2}{2} = 3$ , and  $\heartsuit(3) = \frac{3+3^2}{2} = 6$ . Thus  $\heartsuit(1) + \heartsuit(2) + \heartsuit(3) = 1+3+6=10$ .

2017B

4. **Answer (D):** The given equation implies that 3x + y = -2(x - 3y), which is equivalent to x = y. Therefore

$$\frac{x+3y}{3x-y} = \frac{4y}{2y} = 2.$$

2003A

5. (B) Since

$$0 = 2x^2 + 3x - 5 = (2x + 5)(x - 1)$$
 we have  $d = -\frac{5}{2}$  and  $e = 1$ .

So 
$$(d-1)(e-1) = 0$$
.

OR

If x = d and x = e are the roots of the quadratic equation  $ax^2 + bx + c = 0$ , then

$$de = \frac{c}{a}$$
 and  $d + e = -\frac{b}{a}$ .

For our equation this implies that

$$(d-1)(e-1) = de - (d+e) + 1 = -\frac{5}{2} - \left(-\frac{3}{2}\right) + 1 = 0.$$

2008B 5. **Answer (A):** Note that  $(y - x)^2 = (x - y)^2$ , so

$$(x-y)^2$$
\$ $(y-x)^2 = (x-y)^2$ \$ $(x-y)^2 = ((x-y)^2 - (x-y)^2)^2 = 0^2 = 0.$