14

CALCULATION

2003A 16. (C) Powers of 13 have the same units digit as the corresponding powers of 3; and

$$3^1 = 3$$
, $3^2 = 9$, $3^3 = 27$, $3^4 = 81$, and $3^5 = 243$.

Since the units digit of 3^1 is the same as the units digit of 3^5 , units digits of powers of 3 cycle through 3,9,7, and 1. Hence the units digit of 3^{2000} is 1, so the units digit of 3^{2003} is 7. The same is true of the units digit of 13^{2003} .

2011A

16. Answer (B): Let $k = \sqrt{9 - 6\sqrt{2}} + \sqrt{9 + 6\sqrt{2}}$. Squaring both sides and simplifying results in

$$k^{2} = 9 - 6\sqrt{2} + 2\sqrt{(9 - 6\sqrt{2})(9 + 6\sqrt{2})} + 9 + 6\sqrt{2}$$

$$= 18 + 2\sqrt{81 - 72}$$

$$= 18 + 2\sqrt{9}$$

$$= 24$$

Because k > 0, $k = 2\sqrt{6}$.

20. Answer (B): The prime factorization of 2013 is $3 \cdot 11 \cdot 61$. There must be a factor of 61 in the numerator, so $a_1 \geq 61$. Since $a_1!$ will have a factor of 59 and 2013 does not, there must be a factor of 59 in the denominator, and $b_1 \geq 59$. Thus $a_1 + b_1 \geq 120$, and this minimum value can be achieved only if $a_1 = 61$ and $b_1 = 59$. Furthermore, this minimum value is attainable because

$$2013 = \frac{(61!)(11!)(3!)}{(59!)(10!)(5!)}.$$

Thus $|a_1 - b_1| = a_1 - b_1 = 61 - 59 = 2$.

2014B _{17.} Answer (D): Note that

$$\begin{aligned} 10^{1002} - 4^{501} &= 2^{1002} \cdot 5^{1002} - 2^{1002} \\ &= 2^{1002} (5^{1002} - 1) \\ &= 2^{1002} (5^{501} - 1) (5^{501} + 1) \\ &= 2^{1002} (5 - 1) (5^{500} + 5^{499} + \dots + 5 + 1) (5 + 1) (5^{500} - 5^{499} + \dots \\ &- 5 + 1) \\ &= 2^{1005} (3) (5^{500} + 5^{499} + \dots + 5 + 1) (5^{500} - 5^{499} + \dots - 5 + 1). \end{aligned}$$

Because each of the last two factors is a sum of an odd number of odd terms, they are both odd. The greatest power of 2 is 2^{1005} .