17

RATIO

2003B 17. (B) Let r be the radius of the sphere and cone, and let h be the height of the cone. Then the conditions of the problem imply that

$$\frac{3}{4}\left(\frac{4}{3}\pi r^3\right) = \frac{1}{3}\pi r^2 h$$
, so $h = 3r$.

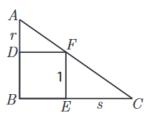
Therefore, the ratio of h to r is 3:1.

2017A 17. Answer (D): The ratio $\frac{PQ}{RS}$ has its greatest value when PQ is as large as possible and RS is as small as possible. Points P, Q, R, and S have coordinates among $(\pm 5, 0)$, $(\pm 4, \pm 3)$, $(\pm 4, \mp 3)$, $(\pm 3, \pm 4)$, $(\pm 3, \mp 4)$, and $(0, \pm 5)$. In order for the distance between two of these points to be irrational, the two points must not form a diameter, and they must not have the same x-coordinate or y-coordinate. If

R=(a,b) and S=(a',b'), then $|a-a'| \ge 1$ and $|b-b'| \ge 1$. Because (3,4) and (4,3) achieve this, they are as close as two points can be, $\sqrt{2}$ units apart. If P=(a,b) and Q=(a',b'), then PQ is maximized when the distance from (a',b') to (-a,-b) is minimized. Because $|a+a'| \ge 1$ and $|b+b'| \ge 1$, the points (3,-4) and (-4,3) are as far apart as possible, $\sqrt{98}$ units. Therefore the greatest possible ratio is $\frac{\sqrt{98}}{\sqrt{2}} = \sqrt{49} = 7$.

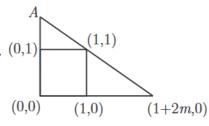
2000

19. **Answer (D):** With out loss of generality, let the side of the square have length 1 unit and let the area of triangle ADF be m. Let AD = r and EC = s. Because triangles ADF and FEC are similar, s/1 = 1/r. Since $\frac{1}{2}r = m$, the area of triangle FEC is $\frac{1}{2}s = \frac{1}{2r} = \frac{1}{4m}$.



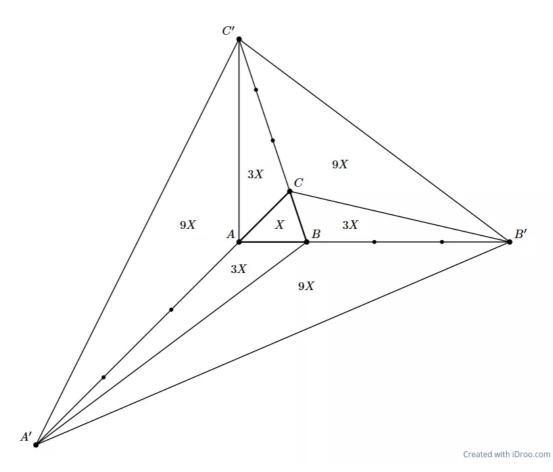
 \mathbf{OR}

Let B=(0,0), E=(1,0), F=(1,1) and D=(0,1) be the vertices of the square. Let C=(1+2m,0), and notice that the area of BEFD is 1 and the area of triangle FEC is m. The slope of the line through C and F is $-\frac{1}{2m}$; thus, it intersects the y-axis at $A=\left(0,1+\frac{1}{2m}\right)$. The area of triangle ADF is therefore $\frac{1}{4m}$.



2017B

19. **Answer (E):** Draw segments $\overline{CB'}$, $\overline{AC'}$, and $\overline{BA'}$. Let X be the area of $\triangle ABC$. Because $\triangle BB'C$ has a base 3 times as long and the same altitude, its area is 3X. Similarly, the areas of $\triangle AA'B$ and $\triangle CC'A$ are also 3X. Furthermore, $\triangle AA'C'$ has 3 times the base and the same height as $\triangle ACC'$, so its area is 9X. The areas of $\triangle CC'B'$ and $\triangle BB'A'$ are also 9X by the same reasoning. Therefore the area of $\triangle A'B'C'$ is X + 3(3X) + 3(9X) = 37X, and the requested ratio is 37:1. Note that nothing in this argument requires $\triangle ABC$ to be equilateral.



2016A

16. **Answer (D):** After reflection about the x-axis, the coordinates of the image are A'(0,-2), B'(-3,-2), and C'(-3,0). The counterclockwise 90°-rotation around the origin maps this triangle to the triangle with vertices A''(2,0), B''(2,-3), and C''(0,-3). Notice that the final image can be mapped to the original triangle by interchanging the x- and y-coordinates, which corresponds to a reflection about the line y = x.

2010B

20. Answer (D): It may be assumed that hexagon ABCDEF has side length 1. Let lines BC and FA intersect at G, let H and J be the midpoints of \overline{AB} and \overline{DE} , respectively, let K be the center of the second circle, and let that circle be tangent to line BC at L. Equilateral $\triangle ABG$ has side length 1, so the first circle, which is the inscribed circle of $\triangle ABG$, has radius $\frac{\sqrt{3}}{6}$. Let r be the radius of the second circle. Then $\triangle GLK$ is a $30-60-90^\circ$ right triangle with LK=r and $2r=GK=GH+HJ+JK=\frac{\sqrt{3}}{2}+\sqrt{3}+r$. Therefore $r=\frac{3\sqrt{3}}{2}=9(\frac{\sqrt{3}}{6})$. The ratio of the radii of the two circles is 9, and the ratio of their areas is $9^2=81$.

