4

TRIANGLES

2009B

16. Answer (B): Let the radius of the circle be r. Because $\triangle BCO$ is a right triangle with a 30° angle at B, the hypotenuse \overline{BO} is twice as long as \overline{OC} , so BO = 2r. It follows that BD = 2r - r = r, and

$$\frac{BD}{BO} = \frac{r}{2r} = \frac{1}{2}.$$

2010A

16. Answer (B): By the Angle Bisector Theorem, $8 \cdot BA = 3 \cdot BC$. Thus BA must be a multiple of 3. If BA = 3, the triangle is degenerate. If BA = 6, then BC = 16, and the perimeter is 6 + 16 + 11 = 33.

2013A 16. Answer (E): The reflected triangle has vertices (7,1), (8,-3), and (10,5). The point (9,1) is on the line segment from (10,5) to (8,-3). The line segment from (6,5) to (9,1) contains the point $(8,\frac{7}{3})$, which must be on both triangles, and by symmetry the point (7,1) is on the line segment from (6,5) to (8,-3). Therefore the union of the two triangles is also the union of two congruent triangles with disjoint interiors, each having the line segment from (8,-3) to $(8,\frac{7}{3})$ as a base. The altitude of one of the two triangles is the distance from the line x=8 to the point (10,5), which is 2. Hence the union of the triangles has area $2 \cdot (\frac{1}{2} \cdot 2 \cdot (\frac{7}{3} + 3)) = \frac{32}{3}$.

2016A

2018A 16. Answer (D): The area of $\triangle ABC$ is 210. Let D be the foot of the altitude from B to \overline{AC} . By the Pythagorean Theorem, AC = $\sqrt{20^2 + 21^2} = 29$, so $210 = \frac{1}{2} \cdot 29 \cdot BD$, and $BD = 14\frac{14}{29}$. Two segments of every length from 15 through 19 can be constructed from B to \overline{AC} . In addition to these 10 segments and the 2 legs, there is a segment of length 20 from B to a point on \overline{AC} near C, for a total of 13 segments with integer length.

2002B 17. (C) Construct the right triangle $\triangle AOB$ as shown in the figure. Since AB = 2, we have $AO = \sqrt{2}$ and $AD = 2 + 2\sqrt{2}$. Similarly, we have $OG = 2 + \sqrt{2}$, so

$$Area(\triangle ADG) = \frac{1}{2}(2 + 2\sqrt{2})(2 + \sqrt{2}) = (1 + \sqrt{2})(2 + \sqrt{2}) = 4 + 3\sqrt{2}.$$

2008A

17. Answer (B): The region consists of three rectangles with length 6 and width 3 together with three 120° sectors of circles with radius 3.

The combined area of the three 120° sectors is the same as the area of a circle with radius 3, so the area of the region is

$$3 \cdot 6 \cdot 3 + \pi \cdot 3^2 = 54 + 9\pi.$$

2015A

17. **Answer (D):** Label the vertices of the equilateral triangle A,B, and C so that A is on the line x=1 and B is on both lines x=1 and $y=1+\frac{\sqrt{3}}{3}x.$ Then $B=(1,1+\frac{\sqrt{3}}{3}).$ Let O be the origin and D=(1,0). Because $\triangle ABC$ is equilateral, $\angle CAB=60^{\circ},$ and $\triangle OAD$ is a $30-60-90^{\circ}$ triangle. Because OD=1, $AD=\frac{\sqrt{3}}{3}$ and $AB=AD+DB=\frac{\sqrt{3}}{3}+(1+\frac{\sqrt{3}}{3})=1+\frac{2\sqrt{3}}{3}.$ The perimeter of $\triangle ABC$ is $3\cdot AB=3+2\sqrt{3}.$ Indeed, $\triangle ABC$ is equilateral with $C=(-\frac{\sqrt{3}}{2},\frac{1}{2}).$

2008A 18. Answer (B): Let x be the length of the hypotenuse, and let y and z be the lengths of the legs. The given conditions imply that

$$y^2 + z^2 = x^2$$
, $y + z = 32 - x$, and $yz = 40$.

Thus

$$(32-x)^2 = (y+z)^2 = y^2 + z^2 + 2yz = x^2 + 80,$$

from which 1024 - 64x = 80, and $x = \frac{59}{4}$.

Note: Solving the system of equations yields leg lengths of

$$\frac{1}{8}(69 + \sqrt{2201})$$
 and $\frac{1}{8}(69 - \sqrt{2201})$,

so a triangle satisfying the given conditions does in fact exist.

2009B

18. **Answer (D):** By the Pythagorean Theorem, AC = 10, so AM = 5. Triangles AME and ABC are similar, so $\frac{ME}{AM} = \frac{6}{8}$ and $ME = \frac{15}{4}$. The area of $\triangle AME$ is $\frac{1}{2} \cdot 5 \cdot \frac{15}{4} = \frac{75}{8}$.

OR

As above, AM=5 and $\triangle AME$ and $\triangle ABC$ are similar with similarity ratio 5:8. Therefore

$$Area(\triangle AME) = \left(\frac{5}{8}\right)^2 \cdot Area(\triangle ABC) = \frac{5^2}{8^2} \cdot \frac{8 \cdot 6}{2} = \frac{75}{8}.$$

2010B

19. Answer (B): The radius of circle O is $\sqrt{156} > 4\sqrt{3} = OA$, so A is inside the circle. Let s be the side length of $\triangle ABC$, let D be the foot of the altitude from A, and let \overline{OE} be the radius through A. This radius is perpendicular to \overline{BC} and contains D, so $OD = \sqrt{OB^2 - BD^2} = \sqrt{156 - \frac{1}{4}s^2}$. If A is on \overline{DE} , then $\angle BAC > \angle BEC > 90^\circ$, an impossibility. Therefore A lies on \overline{OD} , and OA = OD - AD, that is,

$$4\sqrt{3} = \sqrt{156 - \frac{1}{4}s^2} - \frac{\sqrt{3}}{2}s.$$

Rearranging terms and squaring both sides leads to the quadratic equation $s^2 + 12s - 108 = 0$, and the positive solution is s = 6.

2015A

19. **Answer (D):** Because the area is 12.5, it follows that AC = BC = 5. Label D and E so that D is closer to A than to B. Let F be the foot of the perpendicular to \overline{AC} passing through D. Let h = FD. Then AF = h because $\triangle ADF$ is an isosceles right triangle, and $CF = h\sqrt{3}$ because $\triangle CDF$ is a $30-60-90^{\circ}$ triangle. So $h + h\sqrt{3} = AC = 5$ and

$$h = \frac{5}{1 + \sqrt{3}} = \frac{5\sqrt{3} - 5}{2}.$$

Thus the area of $\triangle CDE$ is

$$\frac{25}{2} - 2 \cdot \frac{1}{2} \cdot 5 \cdot \frac{5\sqrt{3} - 5}{2} = \frac{50 - 25\sqrt{3}}{2}.$$

2015B

19. Answer (C): Let O be the center of the circle on which X, Y, Z, and W lie. Then O lies on the perpendicular bisectors of segments \overline{XY} and \overline{ZW} , and OX = OW. Note that segments \overline{XY} and \overline{AB} have the same perpendicular bisector and segments \overline{ZW} and \overline{AC} have the same perpendicular bisector, from which it follows that O lies on the perpendicular bisectors of segments \overline{AB} and \overline{AC} ; that is, O is the circumcenter of $\triangle ABC$. Because $\angle C = 90^\circ$, O is the midpoint of hypotenuse \overline{AB} . Let $a = \frac{1}{2}BC$ and $b = \frac{1}{2}CA$. Then $a^2 + b^2 = 6^2$ and $12^2 + 6^2 = OX^2 = OW^2 = b^2 + (a + 2b)^2$. Solving these two equations simultaneously gives $a = b = 3\sqrt{2}$. Thus the perimeter of $\triangle ABC$ is $12 + 2a + 2b = 12 + 12\sqrt{2}$.

