12

SOLVE FOR X

2001 22. (**D**) Since v appears in the first row, first column, and on diagonal, the sum of the remaining two numbers in each of these lines must be the same. Thus,

$$25 + 18 = 24 + w = 21 + x$$

so w=19 and x=22. now 25,22, and 19 form a diagonal with a sum of 66, so we can find $v=23,\ y=26,$ and z=20. Hence y+z=46.

2005A 21. (B) Because

$$1+2+\cdots+n=\frac{n(n+1)}{2},$$

 $1+2+\cdots+n$ divides the positive integer 6n if and only if

$$\frac{6n}{n(n+1)/2} = \frac{12}{n+1}$$
 is an integer.

There are five such positive values of n, namely, 1, 2, 3, 5, and 11.

2005A 22. (D) The sets S and T consist, respectively, of the positive multiples of 4 that do not exceed $2005 \cdot 4 = 8020$ and the positive multiples of 6 that do not exceed $2005 \cdot 6 = 12,030$. Thus $S \cap T$, the set of numbers that are common to S and to T, consists of the positive multiples of 12 that do not exceed 8020. Let $\lfloor x \rfloor$ represent the largest integer that is less than or equal to x. Then the number of elements in the set $S \cap T$ is

$$\left\lfloor \frac{8020}{12} \right\rfloor = \left\lfloor 668 + \frac{1}{3} \right\rfloor = 668.$$

23. Answer (B): Let x and y be, respectively, the larger and smaller of the integers. Then $96 = x^2 - y^2 = (x + y)(x - y)$. Because 96 is even, x and y are both even or are both odd. In either case x + y and x - y are both even. Hence there are four possibilities for (x + y, x - y), which are (48, 2), (24, 4), (16, 6), and (12, 8). The four corresponding values of (x, y) are (25, 23), (14, 10), (11, 5), and (10, 2).

2015B

23. **Answer** (B): Because there are ample factors of 2, it is enough to count the number of factors of 5. Let f(n) be the number of factors of 5 in positive integers less than or equal to n. For n from 5 to 9, f(n) = 1. In order for f(2n) to equal 3, 2n must be between 15 and 19, inclusive. Therefore n = 8 or n = 9. For n from 10 to 14, f(n) = 2. In order for f(2n) to equal 6, 2n must be between 25 and 29, inclusive. Hence, n = 13 or n = 14. Thus the four smallest integers n = 14 that satisfy the specified condition are n = 14 and n = 14 their sum is 44 and the sum of the digits of 44 is 8.

OR

In fact there are only 4 possible values of n. By Legendre's Theorem, if n! ends in k zeros and (2n)! ends in k' zeros, then

$$k = \left\lfloor \frac{n}{5} \right\rfloor + \left\lfloor \frac{n}{5^2} \right\rfloor + \left\lfloor \frac{n}{5^3} \right\rfloor + \dots + \left\lfloor \frac{n}{5^j} \right\rfloor,$$

$$k' = \left\lfloor \frac{2n}{5} \right\rfloor + \left\lfloor \frac{2n}{5^2} \right\rfloor + \left\lfloor \frac{2n}{5^3} \right\rfloor + \dots + \left\lfloor \frac{2n}{5^j} \right\rfloor + \left\lfloor \frac{2n}{5^{j+1}} \right\rfloor,$$

where j is the highest power of 5 not exceeding n, and thus the highest power of 5 not exceeding 2n is at most j+1. If x is a real number, then $\lfloor 2x \rfloor \leq 2 \lfloor x \rfloor + 1$. So $\lfloor \frac{2n}{5^i} \rfloor \leq 2 \lfloor \frac{n}{5^i} \rfloor + 1$ for each $1 \leq i \leq j+1$. Adding these inequalities yields $k' \leq 2k+j+1$. If $n \geq 15$, then k > 2+j-1=j+1 and k' < 3k. For n=13 and n=14, k=2 and k'=5+1=6=3k. For $n \leq 12$, $k=\lfloor \frac{n}{5} \rfloor$ and $k'=\lfloor \frac{2n}{5} \rfloor$; in this case k'=3k only for n=8 and n=9. So s=8+9+13+14=44 and the answer is 4+4=8.

2005A

24. (B) The conditions imply that both n and n+48 are squares of primes. So for each successful value of n we have primes p and q with $p^2=n+48$ and $q^2=n$, and

$$48 = p^2 - q^2 = (p+q)(p-q).$$

The pairs of factors of 48 are

48 and 1, 24 and 2, 16 and 3, 12 and 4, and 8 and 6.

These give pairs (p,q), respectively, of

$$\left(\frac{49}{2}, \frac{47}{2}\right)$$
, $(13, 11)$, $\left(\frac{19}{2}, \frac{13}{2}\right)$, $(8, 4)$, and $(7, 1)$.

Only (p,q) = (13,11) gives prime values for p and for q, with $n = 11^2 = 121$ and $n + 48 = 13^2 = 169$.

2005B 24. (E) By the given conditions, it follows that x > y. Let x = 10a + b and y = 10b + a, where a > b. Then

$$m^2 = x^2 - y^2 = (10a + b)^2 - (10b + a)^2 = 99a^2 - 99b^2 = 99(a^2 - b^2).$$

Since $99(a^2 - b^2)$ must be a perfect square,

$$a^2 - b^2 = (a+b)(a-b) = 11k^2$$
,

for some positive integer k. Because a and b are distinct digits, we have $a-b \le 9-1=8$ and $a+b \le 9+8=17$. It follows that a+b=11, $a-b=k^2$, and k is either 1 or 2.

If k = 2, then (a, b) = (15/2, 7/2), which is impossible. Thus k = 1 and (a, b) = (6, 5). This gives x = 65, y = 56, m = 33, and x + y + m = 154.

2012A 24. Answer (E): Adding the two equations gives

$$2a^2 + 2b^2 + 2c^2 - 2ab - 2bc - 2ac = 14$$

SO

$$(a-b)^2 + (b-c)^2 + (c-a)^2 = 14.$$

Note that there is a unique way to express 14 as the sum of perfect squares (up to permutations), namely, $14 = 3^2 + 2^2 + 1^2$. Because a - b, b - c, and c - a are integers with their sum equal to 0 and $a \ge b \ge c$, it follows that a - c = 3 and either a - b = 2 and b - c = 1, or a - b = 1 and b - c = 2. Therefore either (a, b, c) = (c + 3, c + 1, c) or (a, b, c) = (c + 3, c + 2, c). Substituting the relations in the first case into the first given equation yields $2011 = a^2 - c^2 + ab - b^2 = (a - c)(a + c) + (a - b)b = 3(2c + 3) + 2(c + 1)$. Solving gives (a, b, c) = (253, 251, 250). The second case does not yield an integer solution. Therefore a = 253.

2014A

25. Answer (B): Because $2^2 < 5$ and $2^3 > 5$, there are either two or three integer powers of 2 strictly between any two consecutive integer powers of 5. Thus for

each n there is at most one m satisfying the given inequalities, and the question asks for the number of cases in which there are three powers rather than two. Let d (respectively, t) be the number of nonnegative integers n less than 867 such that there are exactly two (respectively, three) powers of 2 strictly between 5^n and 5^{n+1} . Because $2^{2013} < 5^{867} < 2^{2014}$, it follows that d + t = 867 and 2d + 3t = 2013. Solving the system yields t = 279.