16

SOLVE FOR X

2006A

6. (B) Take the seventh root of both sides to get $(7x)^2 = 14x$. Then $49x^2 = 14x$, and because $x \neq 0$ we have 49x = 14. Thus x = 2/7.

2014A

7. **Answer (B):** Note that x + y < a + y < a + b, so inequality I is true. If x = -2, y = -2, a = -1, and b = -1, then none of the other three inequalities is true.

2007A

9. **Answer (E):** The given equations are equivalent, respectively, to $3^a = 3^{4(b+2)} \quad \text{and} \quad 5^{3b} = 5^{a-3}.$

Therefore a = 4(b+2) and 3b = a-3. The solution of this system is a = -12 and b = -5, so ab = 60.

2003B

9. (B) Write all the terms with the common base 5. Then

$$5^{-4} = 25^{-2} = \frac{5^{48/x}}{5^{26/x} \cdot 25^{17/x}} = \frac{5^{48/x}}{5^{26/x} \cdot 5^{34/x}} = 5^{(48-26-34)/x} = 5^{-12/x}.$$

It follows that $-\frac{12}{x} = -4$, so x = 3.

OR

First write 25 as 5^2 . Raising both sides to the x power gives

$$5^{-4x} = \frac{5^{48}}{5^{26}5^{34}} = 5^{48-26-34} = 5^{-12}.$$

So -4x = -12 and x = 3.

2008A

9. Answer (B): Because

$$\frac{2x}{3} - \frac{x}{6} = \frac{x}{2}$$

is an integer, x must be even. The case x=4 shows that x is not necessarily a multiple of 3 and that none of the other statements must be true.

2001

10. **(D)** Since

$$x = \frac{24}{y} = 48z$$

we have z = 2y. So $72 = 2y^2$, which implies that y = 6, x = 4, and z = 12. Hence x + y + z = 22.

OR.

Take the product of the equations to get $xy \cdot xz \cdot yz = 24 \cdot 48 \cdot 72$. Thus

$$(xuz)^2 = 2^3 \cdot 3 \cdot 2^4 \cdot 3 \cdot 2^3 \cdot 3^2 = 2^{10} \cdot 3^4$$

So $(xyz)^2 = (2^5 \cdot 3^2)^2$, and we have $xyz = 2^5 \cdot 3^2$. Therefore,

$$x = \frac{xyz}{yz} = \frac{2^5 \cdot 3^2}{2^3 \cdot 3^2} = 4.$$

From this it follows that y = 6 and z = 12, so the sum is 4 + 6 + 12 = 22.

2006A 10. (E) Suppose that $k = \sqrt{120 - \sqrt{x}}$ is an integer. Then $0 \le k \le \sqrt{120}$, and because k is an integer, we have $0 \le k \le 10$. Thus there are 11 possible integer values of k. For each such k, the corresponding value of x is $(120 - k^2)^2$. Because $(120 - k^2)^2$ is positive and decreasing for $0 \le k \le 10$, the 11 values of x are distinct.