8

COMBINATIONS

2008B

- 1. A basketball player made 5 baskets during a game. Each basket was worth either 2 or 3 points. How many different numbers could represent the total points scored by the player?
 - (A) 2
- **(B)** 3 **(C)** 4 **(D)** 5
- **(E)** 6

2004B

- 2. How many two-digit positive integers have at least one 7 as a digit?
 - (A) 10
- **(B)** 18
- (C) 19
- **(D)** 20
- **(E)** 30

2018B

- 3. In the expression $(\underline{\hspace{1cm}} \times \underline{\hspace{1cm}}) + (\underline{\hspace{1cm}} \times \underline{\hspace{1cm}})$ each blank is to be filled in with one of the digits 1, 2, 3, or 4, with each digit being used once. How many different values can be obtained?
 - (A) 2
- **(B)** 3
- (C) 4 (D) 6
- **(E)** 24

2010B

3. A drawer contains red, green, blue and white socks with at least 2 of each color. What is the minimum number of socks that must be pulled from the drawer to guarantee a matching pair?

- (A) 3
- (B) 4 (C) 5
- (D) 8
- **(E)** 9

2018A

4. How many ways can a student schedule 3 mathematics courses algebra, geometry, and number theory—in a 6-period day if no two mathematics courses can be taken in consecutive periods? (What courses the student takes during the other 3 periods is of no concern here.)

- (A) 3
- **(B)** 6
- (C) 12
- **(D)** 18
- **(E)** 24

2004B

5. In the expression $c \cdot a^b - d$, the values of a, b, c, and d are 0, 1, 2, and 3, although not necessarily in that order. What is the maximum possible value of the result?

- (A) 5
- (B) 6
- (C) 8
- (D) 9
- **(E)** 10