17

**RATIO** 

2003B 17. An ice cream cone consists of a sphere of vanilla ice cream and a right circular cone that has the same diameter as the sphere. If the ice cream melts, it will exactly fill the cone. Assume that the melted ice cream occupies 75\% of the volume of the frozen ice cream. What is the ratio of the cone's height to its radius? (Note: A cone with radius r and height h has volume  $\pi r^2 h/3$ , and a sphere with radius r has volume  $4\pi r^3/3$ .)

(A) 2:1

(B) 3:1 (C) 4:1 (D) 16:3

(E) 6:1

2017A

17. Distinct points P, Q, R, and S lie on the circle  $x^2 + y^2 = 25$  and have integer coordinates. The distances PQ and RS are irrational numbers. What is the greatest possible value of the ratio  $\frac{PQ}{RS}$ ?

(A) 3 (B) 5 (C)  $3\sqrt{5}$  (D) 7 (E)  $5\sqrt{2}$ 

2000

19. Through a point on the hypotenuse of a right triangle, lines are drawn parallel to the legs of the triangle so that the triangle is divided into a square and two smaller right triangles. The area of one of the two small right triangle is m times the area of the square. The ratio of the area of the other small right triangle to the area of the square is

(A)  $\frac{1}{2m+1}$  (B) m (C) 1-m (D)  $\frac{1}{4m}$  (E)  $\frac{1}{8m^2}$ 

2017B

- 19. Let ABC be an equilateral triangle. Extend side  $\overline{AB}$  beyond B to a point B' so that BB' = 3AB. Similarly, extend side  $\overline{BC}$  beyond C to a point C' so that CC' = 3BC, and extend side  $\overline{CA}$  beyond A to a point A' so that AA' = 3CA. What is the ratio of the area of  $\triangle A'B'C'$  to the area of  $\triangle ABC$ ?
  - (A) 9:1
- **(B)** 16:1
- (C) 25:1
- **(D)** 36:1
- **(E)** 37:1

2016A

- 19. In rectangle ABCD, AB = 6 and BC = 3. Point E between B and C, and point F between E and C are such that BE = EF = FC. Segments  $\overline{AE}$  and  $\overline{AF}$  intersect  $\overline{BD}$  at P and Q, respectively. The ratio BP:PQ:QD can be written as r:s:t, where the greatest common factor of r, s, and t is 1. What is r+s+t?
  - (A) 7
- **(B)** 9
- (C) 12
- **(D)** 15
- **(E)** 20

2010B

- 20. Two circles lie outside regular hexagon ABCDEF. The first is tangent to  $\overline{AB}$ , and the second is tangent to  $\overline{DE}$ . Both are tangent to lines BC and FA. What is the ratio of the area of the second circle to that of the first circle?
  - (A) 18
- (B) 27
- (C) 36
- **(D)** 81
- **(E)** 108