4

TRIANGLES

- 2009B 16. Points A and C lie on a circle centered at O, each of \overline{BA} and \overline{BC} are tangent to the circle, and $\triangle ABC$ is equilateral. The circle intersects \overline{BO} at D. What is $\frac{BD}{BO}$?

- (A) $\frac{\sqrt{2}}{3}$ (B) $\frac{1}{2}$ (C) $\frac{\sqrt{3}}{3}$ (D) $\frac{\sqrt{2}}{2}$ (E) $\frac{\sqrt{3}}{2}$
- 2010A
- 16. Nondegenerate $\triangle ABC$ has integer side lengths, \overline{BD} is an angle bisector, AD =3, and DC = 8. What is the smallest possible value of the perimeter?
 - (A) 30
- **(B)** 33
- (C) 35
- (D) 36
- (E) 37
- 16. A triangle with vertices (6,5), (8,-3), and (9,1) is reflected about the line x=8to create a second triangle. What is the area of the union of the two triangles?

 - (A) 9 (B) $\frac{28}{3}$ (C) 10 (D) $\frac{31}{3}$ (E) $\frac{32}{3}$

2016A

16. A triangle with vertices A(0,2), B(-3,2), and C(-3,0) is reflected about the xaxis; then the image $\triangle A'B'C'$ is rotated counterclockwise around the origin by 90° to produce $\triangle A''B''C''$. Which of the following transformations will return $\triangle A''B''C''$ to $\triangle ABC$?

- (A) counterclockwise rotation around the origin by 90°
- (B) clockwise rotation around the origin by 90°
- (C) reflection about the x-axis
- (**D**) reflection about the line y = x
- (E) reflection about the y-axis

2018A

- 16. Right triangle ABC has leg lengths AB = 20 and BC = 21. Including \overline{AB} and \overline{BC} , how many line segments with integer length can be drawn from vertex B to a point on hypotenuse \overline{AC} ?
 - (A) 5
- (B) 8 (C) 12 (D) 13
- **(E)** 15

2002B

- 17. A regular octagon ABCDEFGH has sides of length two. Find the area of $\triangle ADG$.
 - (A) $4 + 2\sqrt{2}$ (B) $6 + \sqrt{2}$ (C) $4 + 3\sqrt{2}$ (D) $3 + 4\sqrt{2}$ (E) $8 + \sqrt{2}$

2008A 17. An equilateral triangle has side length 6. What is the area of the region containing all points that are outside the triangle and not more than 3 units from a point of the triangle?

- (A) $36 + 24\sqrt{3}$

- (B) $54 + 9\pi$ (C) $54 + 18\sqrt{3} + 6\pi$ (D) $(2\sqrt{3} + 3)^2 \pi$
- **(E)** $9(\sqrt{3}+1)^2\pi$

2015A

- 17. A line that passes through the origin intersects both the line x=1 and the line $y = 1 + \frac{\sqrt{3}}{3}x$. The three lines create an equilateral triangle. What is the perimeter of the triangle?

- (A) $2\sqrt{6}$ (B) $2+2\sqrt{3}$ (C) 6 (D) $3+2\sqrt{3}$ (E) $6+\frac{\sqrt{3}}{2}$

2008A

- 18. A right triangle has perimeter 32 and area 20. What is the length of its hypotenuse?

- (A) $\frac{57}{4}$ (B) $\frac{59}{4}$ (C) $\frac{61}{4}$ (D) $\frac{63}{4}$ (E) $\frac{65}{4}$

2009B

- 18. Rectangle ABCD has AB = 8 and BC = 6. Point M is the midpoint of diagonal \overline{AC} , and E is on \overline{AB} with $\overline{ME} \perp \overline{AC}$. What is the area of $\triangle AME$?
 - (A) $\frac{65}{8}$ (B) $\frac{25}{3}$ (C) 9 (D) $\frac{75}{8}$ (E) $\frac{85}{8}$

2010B

- 19. A circle with center O has area 156π . Triangle ABC is equilateral, \overline{BC} is a chord on the circle, $OA = 4\sqrt{3}$, and point O is outside $\triangle ABC$. What is the side length of $\triangle ABC$?
 - (A) $2\sqrt{3}$ (B) 6 (C) $4\sqrt{3}$ (D) 12 (E) 18

2015A

- 19. The isosceles right triangle ABC has right angle at C and area 12.5. The rays trisecting $\angle ACB$ intersect AB at D and E. What is the area of $\triangle CDE$?

- (A) $\frac{5\sqrt{2}}{2}$ (B) $\frac{50\sqrt{3}-75}{4}$ (C) $\frac{15\sqrt{3}}{2}$ (D) $\frac{50-25\sqrt{3}}{2}$ (E) $\frac{25}{6}$

- 2015B
- 19. In $\triangle ABC$, $\angle C=90^{\circ}$ and AB=12. Squares ABXY and ACWZ are constructed outside of the triangle. The points X, Y, Z, and W lie on a circle. What is the perimeter of the triangle?
- (A) $12 + 9\sqrt{3}$ (B) $18 + 6\sqrt{3}$ (C) $12 + 12\sqrt{2}$ (D) 30
- **(E)** 32