11

DIVISOR/GCF

2009B

- 21. What is the remainder when $3^0 + 3^1 + 3^2 + \cdots + 3^{2009}$ is divided by 8?
 - (A) 0 (B) 1 (C) 2 (D) 4 (E) 6

2005B

- 22. For how many positive integers n less than or equal to 24 is n! evenly divisible by $1 + 2 + \cdots + n$?
 - **(A)** 8
- **(B)** 12
- (C) 16
- **(D)** 17
- **(E)** 21

2016A

- 22. For some positive integer n, the number $110n^3$ has 110 positive integer divisors, including 1 and the number $110n^3$. How many positive integer divisors does the number $81n^4$ have?
 - **(A)** 110
- **(B)** 191 **(C)** 261 **(D)** 325
- **(E)** 425

2018A

- 22. Let a, b, c, and d be positive integers such that gcd(a,b) = 24, gcd(b,c) = 36, gcd(c,d) = 54, and 70 < gcd(d,a) < 100. Which of the following must be a divisor of a?
 - (A) 5
- **(B)** 7
 - (C) 11 (D) 13 (E) 17

2011B

- 23. What is the hundreds digit of 2011^{2011} ?
- (A) 1 (B) 4 (C) 5 (D) 6 (E) 9

- 2017B 23. Let N = 123456789101112...4344 be the 79-digit number that is formed by writing the integers from 1 to 44 in order, one after the other. What is the remainder when N is divided by 45?
 - **(A)** 1

- (B) 4 (C) 9 (D) 18 (E) 44

2018B 23. How many ordered pairs (a, b) of positive integers satisfy the equation $a \cdot b + 63 = 20 \cdot \operatorname{lcm}(a, b) + 12 \cdot \gcd(a, b),$

> where gcd(a, b) denotes the greatest common divisor of a and b, and lcm(a, b) denotes their least common multiple?

- (A) 0 (B) 2 (C) 4 (D) 6

- **(E)** 8

2008A

- 24. Let $k = 2008^2 + 2^{2008}$. What is the units digit of $k^2 + 2^k$?

 - (A) 0 (B) 2
 - (C) 4
- **(D)** 6
- **(E)** 8

2010A

- 24. The number obtained from the last two nonzero digits of 90! is equal to n. What is n?
 - (A) 12
- (B) 32
- (C) 48
- **(D)** 52
- **(E)** 68

2013B

- 24. A positive integer n is nice if there is a positive integer m with exactly four positive divisors (including 1 and m) such that the sum of the four divisors is equal to n. How many numbers in the set $\{2010, 2011, 2012, \dots, 2019\}$ are nice?
 - (**A**) 1
- **(B)** 2
- **(C)** 3
- **(D)** 4
- **(E)** 5

2014A

24. A sequence of natural numbers is constructed by listing the first 4, then skipping one, listing the next 5, skipping 2, listing 6, skipping 3, and, on the nth iteration, listing n+3 and skipping n. The sequence begins 1, 2, 3, 4, 6, 7, 8, 9, 10, 13. What is the 500,000th number in the sequence?

- (A) 996,506
- **(B)** 996,507
- (C) 996,508
- (D) 996,509
- (E) 996,510

2001

25. How many positive integers not exceeding 2001 are multiples of 3 or 4 but not 5?

- (A) 768
- **(B)** 801
- (C) 934
- **(D)** 1067
- (E) 1167

2003B

- 25. How many distinct four-digit numbers are divisible by 3 and have 23 as their last two digits?
 - (A) 27
- **(B)** 30
- (C) 33
- **(D)** 81
- **(E)** 90

- 2007B
- 25. How many pairs of positive integers (a, b) are there such that a and b have no common factors greater than 1 and

$$\frac{a}{b} + \frac{14b}{9a}$$

is an integer?

- **(A)** 4
- **(B)** 6
- (C) 9
- (D) 12 (E) infinitely many

- 2016A
- 25. How many ordered triples (x, y, z) of positive integers satisfy lcm(x, y) = 72, lcm(x, z) = 600, and lcm(y, z) = 900?
 - (A) 15
- **(B)** 16 **(C)** 24 **(D)** 27
- **(E)** 64