3

2D GEOMETRY NEED FORMULA

- 2012A 21. Let points A = (0,0,0), B = (1,0,0), C = (0,2,0), and D = (0,0,3). Points E, $F, G, \text{ and } H \text{ are midpoints of line segments } \overline{BD}, \overline{AB}, \overline{AC}, \text{ and } \overline{DC} \text{ respectively.}$ What is the area of EFGH?

 - (A) $\sqrt{2}$ (B) $\frac{2\sqrt{5}}{3}$ (C) $\frac{3\sqrt{5}}{4}$ (D) $\sqrt{3}$ (E) $\frac{2\sqrt{7}}{3}$

2014A

- 21. Positive integers a and b are such that the graphs of y = ax + 5 and y = 3x + bintersect the x-axis at the same point. What is the sum of all possible xcoordinates of these points of intersection?

- (A) -20 (B) -18 (C) -15 (D) -12 (E) -8

2014B

- 21. Trapezoid ABCD has parallel sides \overline{AB} of length 33 and \overline{CD} of length 21. The other two sides are of lengths 10 and 14. The angles at A and B are acute. What is the length of the shorter diagonal of ABCD?
 - (A) $10\sqrt{6}$ (B) 25 (C) $8\sqrt{10}$ (D) $18\sqrt{2}$ (E) 26

2016A

- 21. Circles with centers P, Q, and R, having radii 1, 2, and 3, respectively, lie on the same side of line l and are tangent to l at P', Q', and R', respectively, with Q' between P' and R'. The circle with center Q is externally tangent to each of the other two circles. What is the area of $\triangle PQR$?

- **(A)** 0 **(B)** $\sqrt{\frac{2}{3}}$ **(C)** 1 **(D)** $\sqrt{6} \sqrt{2}$ **(E)** $\sqrt{\frac{3}{2}}$

2016B

- 21. What is the area of the region enclosed by the graph of the equation $x^2 + y^2 =$ |x| + |y|?

- (A) $\pi + \sqrt{2}$ (B) $\pi + 2$ (C) $\pi + 2\sqrt{2}$ (D) $2\pi + \sqrt{2}$ (E) $2\pi + 2\sqrt{2}$

2017A

- 21. A square with side length x is inscribed in a right triangle with sides of length 3, 4, and 5 so that one vertex of the square coincides with the right-angle vertex of the triangle. A square with side length y is inscribed in another right triangle with sides of length 3, 4, and 5 so that one side of the square lies on the hypotenuse of the triangle. What is $\frac{x}{y}$?

- (A) $\frac{12}{13}$ (B) $\frac{35}{37}$ (C) 1 (D) $\frac{37}{35}$ (E) $\frac{13}{12}$

2017B

- 22. The diameter \overline{AB} of a circle of radius 2 is extended to a point D outside the circle so that BD = 3. Point E is chosen so that ED = 5and line ED is perpendicular to line AD. Segment \overline{AE} intersects the circle at a point C between A and E. What is the area of $\triangle ABC$?

 - (A) $\frac{120}{37}$ (B) $\frac{140}{39}$ (C) $\frac{145}{39}$ (D) $\frac{140}{37}$ (E) $\frac{120}{31}$

2005B

- 23. In trapezoid ABCD we have \overline{AB} parallel to \overline{DC} , E as the midpoint of \overline{BC} , and F as the midpoint of \overline{DA} . The area of ABEF is twice the area of FECD. What is AB/DC?
 - (A) 2
- **(B)** 3
- **(C)** 5
- **(D)** 6
- **(E)** 8

2001

- 24. In trapezoid ABCD, \overline{AB} and \overline{CD} are perpendicular to \overline{AD} , with AB + CD = BC, AB < CD, and AD = 7. What is $AB \cdot CD$?
 - (A) 12
- **(B)** 12.25
- (C) 12.5
- (D) 12.75
- **(E)** 13

2008B 24. Quadrilateral ABCD has AB = BC = CD, $\angle ABC = 70^{\circ}$, and $\angle BCD = 170^{\circ}$. What is the degree measure of $\angle BAD$?

- (A) 75
- **(B)** 80
- (C) 85
- **(D)** 90
- **(E)** 95

2011B

- 24. A lattice point in an xy-coordinate system is any point (x, y) where both x and y are integers. The graph of y = mx + 2 passes through no lattice point with $0 < x \le 100$ for all m such that $\frac{1}{2} < m < a$. What is the maximum possible value of a?
- (A) $\frac{51}{101}$ (B) $\frac{50}{99}$ (C) $\frac{51}{100}$ (D) $\frac{52}{101}$ (E) $\frac{13}{25}$

2016A

- 24. A quadrilateral is inscribed in a circle of radius $200\sqrt{2}$. Three of the sides of this quadrilateral have length 200. What is the length of its fourth side?
 - (A) 200
- **(B)** $200\sqrt{2}$ **(C)** $200\sqrt{3}$ **(D)** $300\sqrt{2}$ **(E)** 500

2018B

- 24. Let ABCDEF be a regular hexagon with side length 1. Denote by X, Y, and Z the midpoints of sides \overline{AB} , \overline{CD} , and \overline{EF} , respectively. What is the area of the convex hexagon whose interior is the intersection of the interiors of $\triangle ACE$ and $\triangle XYZ$?
- (A) $\frac{3}{8}\sqrt{3}$ (B) $\frac{7}{16}\sqrt{3}$ (C) $\frac{15}{32}\sqrt{3}$ (D) $\frac{1}{2}\sqrt{3}$ (E) $\frac{9}{16}\sqrt{3}$