4

TRIANGLES

- 2017B 21. In $\triangle ABC$, AB = 6, AC = 8, BC = 10, and D is the midpoint of \overline{BC} . What is the sum of the radii of the circles inscribed in $\triangle ADB$ and $\triangle ADC$?

- (A) $\sqrt{5}$ (B) $\frac{11}{4}$ (C) $2\sqrt{2}$ (D) $\frac{17}{6}$ (E) 3

2002B

- 22. Let $\triangle XOY$ be a right-angled triangle with $m \angle XOY = 90^{\circ}$. Let M and N be the midpoints of legs OX and OY, respectively. Given that XN = 19 and YM = 22, find XY.
 - (A) 24
- (B) 26
- (C) 28
- **(D)** 30
- **(E)** 32

2004B

- 22. A triangle with sides of 5, 12, and 13 has both an inscribed and a circumscribed circle. What is the distance between the centers of those circles?
 - (A) $\frac{3\sqrt{5}}{2}$

- (B) $\frac{7}{2}$ (C) $\sqrt{15}$ (D) $\frac{\sqrt{65}}{2}$
- (E) $\frac{9}{2}$

2017A

- 22. Sides \overline{AB} and \overline{AC} of equilateral triangle ABC are tangent to a circle at points B and C, respectively. What fraction of the area of $\triangle ABC$ lies outside the circle?

- (A) $\frac{4\sqrt{3}\pi}{27} \frac{1}{3}$ (B) $\frac{\sqrt{3}}{2} \frac{\pi}{8}$ (C) $\frac{1}{2}$ (D) $\sqrt{3} \frac{2\sqrt{3}\pi}{9}$
- (E) $\frac{4}{3} \frac{4\sqrt{3}\pi}{27}$

2009A

- 23. Convex quadrilateral ABCD has AB = 9 and CD = 12. Diagonals AC and \overline{BD} intersect at E, AC = 14, and $\triangle AED$ and $\triangle BEC$ have equal areas. What is AE?

 - (A) $\frac{9}{2}$ (B) $\frac{50}{11}$ (C) $\frac{21}{4}$ (D) $\frac{17}{3}$ (E) 6

- 23. In $\triangle ABC$, AB = 86, and AC = 97. A circle with center A and radius AB 2013A intersects \overline{BC} at points B and X. Moreover \overline{BX} and \overline{CX} have integer lengths. What is BC?
 - (A) 11
- **(B)** 28
- (C) 33
- (D) 61
- **(E)** 72

- 2013B 23. In triangle ABC, AB = 13, BC = 14, and CA = 15. Distinct points D, E, and F lie on segments \overline{BC} , \overline{CA} , and \overline{DE} , respectively, such that $\overline{AD} \perp \overline{BC}$, $\overline{DE} \perp \overline{AC}$, and $\overline{AF} \perp \overline{BF}$. The length of segment \overline{DF} can be written as $\frac{m}{n}$, where m and n are relatively prime positive integers. What is m + n?
 - (A) 18
- **(B)** 21
- (C) 24
- (D) 27
- **(E)** 30

2017A

- 23. How many triangles with positive area have all their vertices at points (i,j) in the coordinate plane, where i and j are integers between 1 and 5, inclusive?
 - (A) 2128
- (B) 2148 (C) 2160 (D) 2200

- **(E)** 2300

2004B

- 24. In $\triangle ABC$ we have AB = 7, AC = 8, and BC = 9. Point D is on the circumscribed circle of the triangle so that \overline{AD} bisects $\angle BAC$. What is the value of AD/CD?
 - (A) $\frac{9}{8}$
- (B) $\frac{5}{3}$
- (C) 2
- (D) $\frac{17}{7}$
- (E) $\frac{5}{2}$

2017B

- 24. The vertices of an equilateral triangle lie on the hyperbola xy=1, and a vertex of this hyperbola is the centroid of the triangle. What is the square of the area of the triangle?
 - (A) 48
- **(B)** 60
- (C) 108 (D) 120
- **(E)** 169

- 24. Triangle ABC with AB = 50 and AC = 10 has area 120. Let D be the midpoint of \overline{AB} , and let \overline{E} be the midpoint of \overline{AC} . The angle bisector of $\angle BAC$ intersects \overline{DE} and \overline{BC} at F and G, respectively. What is the area of quadrilateral FDBG?
 - (A) 60
- **(B)** 65
- (C) 70
- **(D)** 75
- **(E)** 80